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Motivation
Application of machine learning:

Medicine
Financial markets
Criminal justice

Complex models:

Deep neural networks
Random forests
Kernel methods

Problem
Instancewise Feature Selection:

1. Given a machine learning model, one asks for the importance score of
each feature on the prediction of a given instance.
2. Feature importance is allowed to vary across instances.

Existing Work and Properties

Training: Require training in advance.
Efficiency: Scalable to large data sets.
Additive: Approximated by an additive model locally.
Model-agnostic: Generic to black-box models.

Notations
Input x ∈ Rd .
Model (Y | x) ∼ Pm(· | x).
S: A feature subset of size k .
℘k : All subsets of size k .
Explainer E : P(S | x).
XS: The sub-vector of chosen features.
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Framework
Objective: Maximize the mutual information between selected features and
theresponse variable, over the explainer E :

max
E

I(XS;Y ) subject to S ∼ E(X ). (1)

An information-theoretic interpretation: Define

E∗(x) : = arg min
S

Em

[
log

1
Pm(Y | xS)

∣∣∣ x
]
.︸ ︷︷ ︸

Expected length of encoded message
for the target model using Pm(Y |xS).

Then E∗ is a global optimum of Problem (1). Conversely, any global
optimum of Problem (1) degenerates to E∗ almost surely over PX .

Intractability of the objective:

I(XS;Y ) = E
[

log
Pm(XS,Y )

P(XS)Pm(Y )

]
= E

[
log

Pm(Y | XS)

Pm(Y )

]
= E

[
logPm(Y | XS)

]
+ Const.

= EX ES|XEY |XS

[
logPm(Y | XS)

]
︸ ︷︷ ︸

Intractable to compute directly.

+ Const.

Approximations

A variational formulation: Introduce a variational family for approximation:

Q : =
{
Q | Q = {xS → QS(Y |xS),S ∈ ℘k}

}
.

An application of Jensen’s inequality yields the lower bound

EY |XS[logPm(Y | XS)] ≥
∫

Pm(Y | XS) logQS(Y | XS)

= EY |XS[logQS(Y | XS)],

where equality holds iff Pm(Y | XS)
d
= QS(Y | XS).

A single neural network gα for parametrizing Q:
Define QS(Y |xS) : = gα(x̃S,Y ), where x̃S ∈ Rd is defined by

(x̃S)i = 1 {i ∈ S} · xi.

Continuous relaxation of subset sampling:
Gumbel(0,1): Gi = − log(− log ui),ui ∼ Uniform(0,1).
Concrete(log p1, . . . , log pd): A random vector C ∈ Rd , with

Ci =
exp{(log pi + Gi)/τ}∑d
j=1 exp{(log pj + Gj)/τ}

.

Approximate k out of d subset sampling:

C j ∼ Concrete(wθ(X )) i.i.d. for j = 1,2, . . . , k ,
V (θ, ζ) = (V1,V2, . . . ,Vd), Vi = max

j
C j

i ,

X̃S ≈ V (θ, ζ)� X .
(τ : temperature, θ: parameters of explainer, ζ: auxiliary random variables,�: elementwise product)

Final Objective

Objective: Containing parameters of both explainer and variational dist. θ, α.

max
θ,α

EX ,Y ,ζ

[
log gα(V (θ, ζ)� X ,Y )

]
.

Optimization: Stochastic gradient methods such as Adam and RMSProp.

Synthetic Experiments

Four data sets: Orange skin, XOR, Nonlinear additive model, Switch.
Comparing methods: Saliency Map, DeepLIFT, KernelSHAP, LIME.
Evaluation: Median rank of the influential features, time complexity.

Median ranks of the influential features
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Orange skin
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Nonlinear additive
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Feature switching

(Dotted green: optimal ranks; red: median; dotted blue: mean.)
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(The training time of L2X is shown in translucent bars.)

Real-world Experiments

Data sets and models: IMDB movie review with word-based CNN and
Hierarchical LSTM respectively, MNIST with CNN.
Evaluation: Post-hoc accuracy, human accuracy.

IMDB-Word IMDB-Sent MNIST
Post-hoc accuracy (PA) 0.90.8 0.849 0.958
Human accuracy (HA) 0.844 0.774 NA

HA on words: 84.4% > HA on original: 83.7%

Visualization:


