Learning to Explain:

An Information-Theoretic Perspective on Model Interpretation

Jianbo Chen*2 Le Song ${ }^{\ddagger} \ddagger$ § ${ }^{\ddagger}$ Martin J. Wainwright* Michael I. Jordan*
University of California, Berkeley*, Georgia Institute of Technology ${ }^{\frac{\ddagger}{4}}$, Ant Financial ${ }^{\S}$

Motivation

Application of machine learning
Medicine
Financial markets
Criminal justice

Complex models:
Deep neural networks Random forests
Kernel methods

Problem

Instancewise Feature Selection:

1. Given a machine learning model, one asks for the importance score of each feature on the prediction of a given instance.
2. Feature importance is allowed to vary across instances

Existing Work and Properties
Training: Require training in advance.
Efficiency: Scalable to large data sets
Additive: Approximated by an additive model locally
Model-agnostic: Generic to black-box models.

	Training	Efficiency	Additive	Model-agnostic
Parzen (Baehrens et al., 2010)	Yes	High	Yes	Yes
Salient Map (Simonyan et al., 2013)	No	High	Yes	No
LRP (Bach et al., 2015)	No	High	Yes	No
LIME (Ribeiro et al., 2016)	No	Low	Yes	Yes
DeepLIFT (Shrikumar et al., 2017)	No	High	Yes	No
Kernel SHAP (Lundberg \& Lee, 2017)	No	Low	Yes	Yes
IG (Sundararajan et al., 2017)	No	Medium	Yes	No
L2X	Yes	High	No	Yes

Notations

Input $x \in \mathbb{R}^{d}$.
Model $(Y \mid x) \sim \mathbb{P}_{m}(\cdot \mid x)$,
S: A feature subse $(-x)$.
S : A feature subset of size k
ρ_{k} : All subsets of size
Explainer $\mathcal{E}: \mathbb{P}(S \mid x)$.
X_{s} : The sub-vector of chosen features.

Framework

Objective: Maximize the mutual information between selected features and theresponse variable, over the explainer \mathcal{E}

$$
\max I\left(X_{S} ; Y\right) \text { subject to } \quad S \sim \mathcal{E}(X) \text {. }
$$

An information-theoretic interpretation: Define

$$
\mathcal{E}^{*}(x):=\arg \min _{S} \underbrace{\mathbb{E}_{m}\left[\left.\log \frac{1}{\mathbb{P}_{m}\left(Y \mid x_{S}\right)} \right\rvert\, x\right]}_{\begin{array}{c}
\text { Expected length of encoded message. } \\
\text { for the target model using } \mathbb{P}_{m}(Y \mid Y s)
\end{array}} .
$$

Then \mathcal{E}^{*} is a global optimum of Problem (1). Conversely, any global optimum of Problem (1) degenerates to \mathcal{E}^{*} almost surely over \mathbb{P}_{x}. Intractability of the objective.

$$
\begin{aligned}
I\left(X_{S} ; Y\right) & =\mathbb{E}\left[\log \frac{\mathbb{P}_{m}\left(X_{S}, Y\right)}{\mathbb{P}\left(X_{S}\right) \mathbb{P}_{m}(Y)}\right]=\mathbb{E}\left[\log \frac{\mathbb{P}_{m}\left(Y \mid X_{S}\right)}{\mathbb{P}_{m}(Y)}\right] \\
& =\mathbb{E}\left[\log \mathbb{P}_{m}\left(Y \mid X_{S}\right)\right]+\text { Const. } \\
& =\mathbb{E}_{X} \underbrace{}_{\text {Intractable to compute directly. }} \mathbb{E}_{Y \mid X_{S}}\left[\log \mathbb{P}_{m}\left(Y \mid X_{S}\right)\right]
\end{aligned}+\text { Const. }
$$

Approximations

A variational formulation: Introduce a variational family for approximation:

$$
\mathcal{Q}:=\left\{\mathbb{Q} \mid \mathbb{Q}=\left\{x_{S} \rightarrow \mathbb{Q}_{s}\left(Y \mid x_{S}\right), S \in \wp_{k}\right\}\right\} .
$$

An application of Jensen's inequality yields the lower bound

$$
\begin{aligned}
\mathbb{E}_{Y \mid X_{s}}\left[\log \mathbb{P}_{m}\left(Y \mid X_{S}\right)\right] & \geq \int_{\mathbb{P}_{m}\left(Y \mid X_{S}\right) \log \mathbb{Q}_{s}\left(Y \mid X_{S}\right)} \\
& =\mathbb{E}_{Y \mid X_{S}}\left[\log \mathbb{Q}_{s}\left(Y \mid X_{S}\right)\right]
\end{aligned}
$$

where equality holds iff $\mathbb{P}_{m}\left(Y \mid X_{S}\right) \stackrel{d}{=} \mathbb{Q}_{s}\left(Y \mid X_{S}\right)$.
A single neural network g_{α} for parametrizing \mathbb{Q} :
Define $\mathbb{Q}_{s}\left(Y \mid x_{S}\right):=g_{\alpha}\left(\widetilde{x}_{S}, Y\right)$, where $\widetilde{x}_{S} \in \mathbb{R}^{d}$ is defined by

$$
\left(\widetilde{x}_{S}\right)_{i}=\mathbf{1}\{i \in S\} \cdot x_{i} .
$$

Continuous relaxation of subset sampling:
Gumbel $(0,1): G_{i}=-\log \left(-\log u_{i}\right), u_{i} \sim \operatorname{Uniform}(0,1)$
Concrete $\left(\log p_{1}, \ldots, \log p_{d}\right):$ A random vector $C \in \mathbb{R}^{d}$, with

$$
C_{i}=\frac{\exp \left\{\left(\log p_{i}+G_{i}\right) / \tau\right\}}{\sum_{j=1}^{d} \exp \left\{\left(\log p_{j}+G_{j}\right) / \tau\right\}} .
$$

Approximate k out of d subset sampling:

$$
C^{j} \sim \operatorname{Concrete}\left(w_{\theta}(X)\right) \text { i.i.d. for } j=1,2, \ldots, k,
$$

$$
V(\theta, \zeta)=\left(V_{1}, V_{2}, \ldots, V_{d}\right), \quad V_{i}=\max C_{i}^{i}
$$

$$
\widetilde{X}_{S} \approx V(\theta, \zeta) \odot X
$$

(τ : temperature, θ : parameters of explainer, $\zeta:$ auxiliary random variables, \odot : elementwise product)

Final Objective

Objective: Containing parameters of both explainer and variational dist. θ, α $\max _{\theta, \alpha} \mathbb{E}_{X, Y, \zeta}\left[\log g_{\alpha}(V(\theta, \zeta) \odot X, Y)\right]$
Optimization: Stochastic gradient methods such as Adam and RMSProp.

Synthetic Experiments

Four data sets: Orange skin, XOR, Nonlinear additive model, Switch. Comparing methods: Saliency Map, DeepLIFT, KerneISHAP, LIME Evaluation: Median rank of the influential features, time complexity.

Real-world Experiments

Data sets and models: IMDB movie review with word-based CNN and Hierarchical LSTM respectively, MNIST with CNN Evaluation: Post-hoc accuracy, human accuracy

$$
\begin{aligned}
& \text { Post-hoc accuracy (PA) IMDB-Word IMDB-Sent MNIST } \\
& \begin{array}{llll}
\text { Human accuracy (HA) } & 0.90 .84 & 0.849 & 0.774 \\
0.958 \\
\hline
\end{array} \\
& \text { HA on words: } 84.4 \%>\text { HA on original: } 83.7 \%
\end{aligned}
$$

Visualization:

