

Motivation

Application of machine learning:

Medicine Financial markets Criminal justice

Complex models:

Deep neural networks Random forests Kernel methods

Problem

Instancewise Feature Selection:

. Given a machine learning model, one asks for the importance score of each feature on the prediction of a given instance. 2. Feature importance is allowed to vary across instances.

of sibling rivalry, the unbreakable **bond** of twins, child abuse and good always winning out over evil. It is evening. captivating, and filled with laughter and tears. If you have not yet seen this film, please rent it, I promise, you'll be amazed at how such a wonderful film could go unnoticed.

Existing Work and Properties

Training: Require training in advance. **Efficiency**: Scalable to large data sets. **Additive:** Approximated by an additive model locally. **Model-agnostic**: Generic to black-box models.

	Training	Efficiency	Additive	Mod
Parzen (Baehrens et al., 2010)	Yes	High	Yes	
Salient Map (Simonyan et al., 2013)	No	High	Yes	
LRP (Bach et al., 2015)	No	High	Yes	
LIME (Ribeiro et al., 2016)	No	Low	Yes	
DeepLIFT (Shrikumar et al., 2017)	No	High	Yes	
Kernel SHAP (Lundberg & Lee, 2017)	No	Low	Yes	
IG (Sundararajan et al., 2017)	No	Medium	Yes	
L2X	Yes	High	No	

Notations

Input $x \in \mathbb{R}^d$. Model $(Y \mid x) \sim \mathbb{P}_m(\cdot \mid x)$. S: A feature subset of size k. \mathcal{O}_k : All subsets of size k. **Explainer** \mathcal{E} : $\mathbb{P}(S \mid x)$. X_S : The sub-vector of chosen features.

Learning to Explain: An Information-Theoretic Perspective on Model Interpretation

Jianbo Chen^{*2} Le Song^{‡,§} Martin J. Wainwright^{*} Michael I. Jordan^{*} University of California, Berkeley*, Georgia Institute of Technology[‡], Ant Financial[§]

Framework

Objective: Maximize the mutual information between selected features and theresponse variable, over the explainer \mathcal{E} :

 $\max_{S} I(X_{S}; Y)$ subject to $S \sim \mathcal{E}(X)$.

An information-theoretic interpretation: Define

 $\mathcal{E}^*(x) := \arg\min_{S} \mathbb{E}_m \mid$

Expected length of encoded message for the target model using $\mathbb{P}_m(Y|x_S)$.

Then \mathcal{E}^* is a global optimum of Problem (1). Conversely, any global optimum of Problem (1) degenerates to \mathcal{E}^* almost surely over \mathbb{P}_X . Intractability of the objective:

$$egin{aligned} \mathcal{U}(X_{S};Y) &= \mathbb{E}\Big[\lograc{\mathbb{P}_{m}(X_{S},Y)}{\mathbb{P}(X_{S})\mathbb{P}_{m}(Y)}\Big] = \mathbb{E}^{2} \ &= \mathbb{E}\Big[\log\mathbb{P}_{m}(Y\mid X_{S})\Big] + \mathbb{C}^{2} \ &= \mathbb{E}_{X}\mathbb{E}_{S\mid X}\mathbb{E}_{Y\mid X_{S}}\Big[\log\mathbb{P}_{m}(Y\mid X_{S})\Big] \end{aligned}$$

Intractable to compute directly.

Approximations

A variational formulation: Introduce a variational family for approximation: $\mathcal{Q} := \Big\{ \mathbb{Q} \mid \mathbb{Q} = \{ \mathbf{x}_{\mathcal{S}} \to \mathbb{Q}_{\mathcal{S}}(\mathbf{Y} | \mathbf{x}_{\mathcal{S}}), \, \mathcal{S} \in \mathcal{O}_k \} \Big\}.$ An application of Jensen's inequality yields the lower bound $\mathbb{E}_{Y|X_{\mathcal{S}}}[\log \mathbb{P}_m(Y \mid X_{\mathcal{S}})] \geq \int \mathbb{P}_m(Y \mid X_{\mathcal{S}}) \log \mathbb{Q}_{\mathcal{S}}(Y \mid X_{\mathcal{S}})$ $= \mathbb{E}_{Y \mid X_{S}}[\log \mathbb{Q}_{S}(Y \mid X_{S})],$ where equality holds iff $\mathbb{P}_m(Y \mid X_S) \stackrel{d}{=} \mathbb{Q}_S(Y \mid X_S)$. A single neural network g_{α} for parametrizing \mathbb{Q} : Define $\mathbb{Q}_{\mathcal{S}}(Y|x_{\mathcal{S}}) := g_{\alpha}(\widetilde{x}_{\mathcal{S}}, Y)$, where $\widetilde{x}_{\mathcal{S}} \in \mathbb{R}^d$ is defined by $(\widetilde{x}_S)_i = \mathbf{1} \{i \in S\} \cdot x_i.$ **Continuous relaxation of subset sampling:** Gumbel(0, 1): $G_i = -\log(-\log u_i), u_i \sim \text{Uniform}(0, 1).$ Concrete(log $p_1, \ldots, \log p_d$): A random vector $C \in \mathbb{R}^d$, with $C_i = rac{\exp\{(\log p_i + G_i)/ au\}}{\sum_{j=1}^d \exp\{(\log p_j + G_j)/ au\}}$

Approximate k out of d subset sampling:

 $C^{j} \sim \text{Concrete}(w_{\theta}(X)) \text{ i.i.d. for } j = 1, 2, \dots, k,$ $V(\theta,\zeta) = (V_1, V_2, \ldots, V_d), \quad V_i = \max_i C_i^j,$

$$\widetilde{X}_{S} \approx V(\theta, \zeta) \odot X.$$

 $(\tau: \text{temperature}, \theta: \text{parameters of explainer}, \zeta: \text{auxiliary random variables}, \odot: \text{elementwise product})$

Final Objective

Objective: Containing parameters of both explainer and variational dist. θ, α . $\max_{\theta \alpha} \mathbb{E}_{X,Y,\zeta} \Big[\log g_{\alpha}(V(\theta,\zeta) \odot X,Y) \Big].$

Optimization: Stochastic gradient methods such as Adam and RMSProp.

Synthetic Experiments

Four data sets: Orange skin, XOR, Nonlinear additive model, Switch. **Comparing methods**: Saliency Map, DeepLIFT, KernelSHAP, LIME. **Evaluation**: Median rank of the influential features, time complexity.

Real-world Experiments

Visualization:

Truth	Model	Key words
positive	positive	Ray Liotta and Tom Hulc Dominick, (nicky) a mildl brother, Liotta, who plays of sibling rivalry, the unbr captivating, and filled wit you'll be amazed at how s
negative	negative	Sorry to go against the flo watching Gena Rowlands film has some cinematic v value. I wish I would have
negative	positive	This movie is chilling ren to feed on past blockbust reasoning that a cocktail n rookie mistake. Even the is shown as raising doves needs to be taken seriousl
positive	negative	When a small town is three his friend. As she become take a beating causing he excitement, but solid police
Truth	Predicted	Key sentence
positive	positive	There are few really hila Martians Jack Nicholson enjoyed. This is a movi evening.
negative	negative	You get 5 writers togeth make one movie out of it absolutely stinks. 4.5 is think I could write movie
negative	positive	This movie is not the sar because the 1954 version She is a good actress and therefore I can't pass jud has gratuitous nudity and fan of rock music, so its with Barbra and Kris, an
positive	negative	The first time you see th watch part 2. it will chan Is ai a bad thing?

