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Abstract
We propose a method for feature selection that employs
kernel-based measures of independence to find a subset of
covariates that is maximally predictive of the response. Building
on past work in kernel dimension reduction, we show how to
perform feature selection via a constrained optimization problem
involving the trace of the conditional covariance operator. We
prove various consistency results for this procedure, and also
demonstrate that our method compares favorably with other
state-of-the-art algorithms on a variety of synthetic and real data
sets.

Formulating Feature Selection

The problem of feature selection:
Given n i.i.d. samples {(xi, yi) : i = 1,2, . . . ,n} generated from
PX ,Y together with an integer m ≤ d , select m of the d features
S = {X1,X2, . . . ,Xd} which best predict Y .
Dependence Perspective:
Identify a subset of features T of size m such that:

XS\T is conditionally independent of Y given XT .
Prediction Perspective:
Find the subset of features that minimizes the prediction error:

min
T :|T |≤m

EF(XT ) = min
T :|T |≤m

inf
f∈Fm

EX ,YL(Y , f (XT )),

where EF(XT ) is the error of prediction using only the features in
T , F is a function class from XT to Y, and L is a loss.

Conditional Covariance Operator

(HX , kX ) and (HY, kY): RKHSs of functions on X and Y.
(X ,Y ): a random vector on X × Y with joint distribution PX ,Y .
Cross-covariance operator : an operator ΣYX : HX → HY with
〈g,ΣYX f 〉HY = EX ,Y [(f (X )− EX [f (X )])(g(Y )− EY [g(Y )])].

Conditional covariance operator :
ΣYY |X = ΣYY − ΣYXΣ−1

XXΣXY .

ΣYY |X captures conditional variance: for g ∈ HY,
〈g,ΣYY |Xg〉HY = EX [VarY |X [g(Y )|X ]].

ΣYY |X captures residual error: for g ∈ HY,

〈g,ΣYY |Xg〉HY = inf
f∈HX

EX ,Y (g(Y )− f (X ))2.

Proposed Method

Feature selection criterion:
min
T :|T |=m

Q(T ) := Tr(ΣYY |XT ).

Property 1. If (HX , kX ) is characteristic, then
Tr(ΣYY |X) ≤ Tr(ΣYY |XT ) for any T . Moreover, the equality
Tr(ΣYY |X) = Tr(ΣYY |XT ) holds if and only if Y |= X |XT .

Property 2. The criterion characterizes prediction error:
Tr(ΣYY |XT ) = EFm(XT ) = inf

f∈Fm

EX ,Y (Y − f (XT ))2.

where Fm is a function space from Rm to Y defined from HX .

Empirical estimate (with a linear kernel on Y ):
min
|T |=m

Q̂(n)(T ) := Tr(YT (GXT + nεnIn)−1Y),

where

GXT = (In −
1
n

11T )KXT (In −
1
n

11T ),

KXT = (kX(xTi , x
T
j ))n×n,

Y ∈ Rn×k ,

and xT ∈ Rd is a vector with xTi = xi if i ∈ T or 0 otherwise.

Theorem 1. [Feature Selection Consistency] Define the set of
all optimal feature subsets to be A = argmin|T |≤mQ(T ), and let
T̂ (n) ∈ argmin|T |≤mQ̂(n)(T ) be a global optimum of the empirical
estimate. If εn → 0 and εnn→∞ as n→∞, we have

P(T̂ (n) ∈ A)→ 1.

Optimization

We relax the initial NP-hard formulation to obtain:
min

w
yT (Gw�X + nεnIn)−1y

subject to 0 ≤ wi ≤ 1, i = 1, . . . ,d ,
1Tw ≤ m.

where � is the Hadamard product.

We may further use a kernel approximation Gw ≈ VwV T
w :

(Gw�X + nεnIn)−1 ≈ 1
εnn

(I − Vw(V T
w Vw + εnnID)−1V T

w ).

Both objectives are optimized using projected gradient descent.

Synthetic Experiments

Synthetic data sets: binary classification, 4-way classification,
additive nonlinear regression.
Other algorithms: Recursive feature elimination (RFE),
Minimum Redundancy Maximum Relevance (mRMR), BAHSIC,
mutual information (MI) and Pearson’s correlation (PC).
Evaluation: Median rank assigned to true features.
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Additive Nonlinear Regression

Plots of median rank vs. number of samples

Real-world Experiments

Summary of data sets:
ALLAML CLL-SUB-111 glass ORL orlraws10P pixraw10P

Samples 72 111 214 400 100 100
Features 7,129 11,340 10 1,024 10,304 10,000
Classes 2 3 6 40 10 10

TOX-171 vowel warpAR10P warpPIE10P wine Yale
Samples 171 990 130 210 178 165
Features 5,784 10 2,400 2,420 13 1,024
Classes 4 11 10 10 3 15

Other nonlinear algorithms: mRMR, BAHSIC, and MI.
Evaluation: Accuracy of a kernel SVM on selected features.
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Plots of accuracy vs. number of selected features


