Kernel Feature Selection via Conditional Covariance Minimization Mitchell Stern* Martin J. Wainwright Michael I. Jordan Jianbo Chen*

Abstract

We propose a method for feature selection that employs kernel-based measures of independence to find a subset of covariates that is maximally predictive of the response. Building on past work in kernel dimension reduction, we show how to perform feature selection via a constrained optimization problem involving the trace of the conditional covariance operator. We prove various consistency results for this procedure, and also demonstrate that our method compares favorably with other state-of-the-art algorithms on a variety of synthetic and real data sets.

Formulating Feature Selection

The problem of feature selection:

Given *n* i.i.d. samples $\{(x_i, y_i) : i = 1, 2, ..., n\}$ generated from $P_{X,Y}$ together with an integer $m \leq d$, select m of the d features $S = \{X_1, X_2, \ldots, X_d\}$ which best predict Y.

Dependence Perspective:

Identify a subset of features \mathcal{T} of size *m* such that:

 $X_{S\setminus T}$ is conditionally independent of Y given X_T .

Prediction Perspective:

Find the subset of features that minimizes the prediction error: $\min_{\mathcal{T}:|\mathcal{T}| \leq m} \mathcal{E}_{\mathcal{F}}(X_{\mathcal{T}}) = \min_{\mathcal{T}:|\mathcal{T}| < m} \inf_{f \in \mathcal{F}_m} \mathbb{E}_{X,Y}L(Y, f(X_{\mathcal{T}})),$

where $\mathcal{E}_{\mathcal{F}}(X_{\mathcal{T}})$ is the *error of prediction* using only the features in \mathcal{T}, \mathcal{F} is a function class from $\mathcal{X}_{\mathcal{T}}$ to \mathcal{Y} , and L is a loss.

Conditional Covariance Operator

 $(\mathcal{H}_{\mathcal{X}}, k_{\mathcal{X}})$ and $(\mathcal{H}_{\mathcal{Y}}, k_{\mathcal{Y}})$: RKHSs of functions on \mathcal{X} and \mathcal{Y} . (X, Y): a random vector on $\mathcal{X} \times \mathcal{Y}$ with joint distribution $P_{X,Y}$. *Cross-covariance operator*: an operator $\Sigma_{YX} : \mathcal{H}_{\mathcal{X}} \to \mathcal{H}_{\mathcal{Y}}$ with $\langle g, \Sigma_{YX} f \rangle_{\mathcal{H}_{\mathcal{Y}}} = \mathbb{E}_{X,Y}[(f(X) - \mathbb{E}_X[f(X)])(g(Y) - \mathbb{E}_Y[g(Y)])].$

Conditional covariance operator:

 $\Sigma_{YY|X} = \Sigma_{YY} - \Sigma_{YX} \Sigma_{XX}^{-1} \Sigma_{XY}.$

 $\Sigma_{YY|X}$ captures **conditional variance:** for $g \in \mathcal{H}_{\mathcal{Y}}$,

 $\langle g, \Sigma_{YY|X}g \rangle_{\mathcal{H}_{\mathcal{V}}} = \mathbb{E}_{X}[\operatorname{Var}_{Y|X}[g(Y)|X]].$

 $\Sigma_{YY|X}$ captures **residual error**: for $g \in \mathcal{H}_{\mathcal{Y}}$,

 $\langle g, \Sigma_{YY|X}g \rangle_{\mathcal{H}_{\mathcal{Y}}} = \inf_{f \in \mathcal{H}_{\mathcal{Y}}} \mathbb{E}_{X,Y}(g(Y) - f(X))^2.$

University of California, Berkeley

Proposed Method

Feature selection criterion:

 $\min_{\mathcal{T}:|\mathcal{T}|=m} \mathcal{Q}(\mathcal{T}) := \operatorname{Tr}(\Sigma_{YY|X_{\mathcal{T}}}).$

Property 1. If $(\mathcal{H}_{\mathcal{X}}, k_{\mathcal{X}})$ is characteristic, then $\operatorname{Tr}(\Sigma_{YY|X}) \leq \operatorname{Tr}(\Sigma_{YY|X_{\mathcal{T}}})$ for any \mathcal{T} . Moreover, the equality $\operatorname{Tr}(\Sigma_{YY|X}) = \operatorname{Tr}(\Sigma_{YY|X_{\mathcal{T}}})$ holds if and only if $Y \perp X|X_{\mathcal{T}}$.

Property 2. The criterion characterizes prediction error: $\operatorname{Tr}(\Sigma_{YY|X_{\mathcal{T}}}) = \mathcal{E}_{\mathcal{F}_m}(X_{\mathcal{T}}) = \inf_{f \in \mathcal{F}_m} \mathbb{E}_{X,Y}(Y - f(X_{\mathcal{T}}))^2.$

Empirical estimate (with a linear kernel on Y): $\min_{|\mathcal{T}|=m} \widehat{\mathcal{Q}}^{(n)}(\mathcal{T}) := \mathrm{Tr}(\mathbf{Y}^{T}(\mathbf{G}_{X_{\mathcal{T}}} + n\varepsilon_{n}\mathbf{I}_{n})^{-1}\mathbf{Y}),$

where

 $G_{X_{\mathcal{T}}} = (I_n - \frac{1}{n} \mathbf{1} \mathbf{1}^{\mathcal{T}}) K_{X_{\mathcal{T}}} (I_n - \frac{1}{n} \mathbf{1} \mathbf{1}^{\mathcal{T}}),$ $K_{X_{\mathcal{T}}} = (k_X(x_i^{\mathcal{T}}, x_i^{\mathcal{T}}))_{n \times n},$ $\mathbf{Y} \in \mathbb{R}^{n \times k},$

and $x^{\mathcal{T}} \in \mathbb{R}^d$ is a vector with $x_i^{\mathcal{T}} = x_i$ if $i \in \mathcal{T}$ or 0 otherwise.

Theorem 1. [Feature Selection Consistency] Define the set of all optimal feature subsets to be $A = argmin_{|\mathcal{T}| < m}Q(T)$, and let $\widehat{T}^{(n)} \in argmin_{|\mathcal{T}| \le m} \widehat{\mathcal{Q}}^{(n)}(\mathcal{T})$ be a global optimum of the empirical estimate. If $\varepsilon_n \to 0$ and $\varepsilon_n n \to \infty$ as $n \to \infty$, we have $P(\widehat{T}^{(n)} \in A) \rightarrow 1.$

Optimization

We relax the initial NP-hard formulation to obtain: $\min_{W} \mathbf{y}^{T} (\mathbf{G}_{W \odot X} + n \varepsilon_{n} I_{n})^{-1} \mathbf{y}$ subject to $0 \le w_i \le 1, i = 1, \ldots, d$, $\mathbf{1}^T w \leq m.$ where \odot is the Hadamard product. We may further use a kernel approximati $(G_{w\odot X} + n\varepsilon_n I_n)^{-1} \approx \frac{1}{\varepsilon_n n} (I - V_w (V_w^T))^{-1}$

Both objectives are optimized using projected gradient descent.

where \mathcal{F}_m is a function space from \mathbb{R}^m to \mathcal{Y} defined from $\mathcal{H}_{\mathcal{X}}$.

tion
$$G_w \approx V_w V_w^T$$
:
 $(V_w + \varepsilon_n n I_D)^{-1} V_w^T$).

Synthetic Experiments

Synthetic data sets: binary classification, 4-way classification, additive nonlinear regression. **Other algorithms**: Recursive feature elimination (RFE), Minimum Redundancy Maximum Relevance (mRMR), BAHSIC, mutual information (MI) and Pearson's correlation (PC). **Evaluation**: Median rank assigned to true features.

Real-world Experiments

Summary of data sets:

	ALLAML	CLL-SUB-111
Samples	72	111
Features	7,129	11,340
Classes	2	3
	TOX-171	vowel
Samples	TOX-171 171	vowel 990
Samples Features	TOX-171 171 5,784	vowel 990 10

