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_Abstract il Proposed Method

We propose a method for feature selection that employs
kernel-based measures of independence to find a subset of

covariates that is maximally predictive of the response. Building

on past work in kernel dimension reduction, we show how to

perform feature selection via a constrained optimization problem

involving the trace of the conditional covariance operator. We
prove various consistency results for this procedure, and also
demonstrate that our method compares favorably with other

state-of-the-art algorithms on a variety of synthetic and real data

sets.

Formulating Feature Selection

The problem of feature selection:

Given ni.i.d. samples {(x;, y;) : i =1,2,...,n} generated from
Px y together with an integer m < d, select m of the d features
S = {X1 Xo, ... ,Xd} which best predict Y.

Dependence Perspective:

ldentify a subset of features 7 of size m such that:

Xs\7 Is conditionally independent of Y given Xt

Prediction Perspective:
Find the subset of features that minimizes the prediction error:

| Xr)= min inf ExyL(Y,f(X
i SFT) = i 2, B Y )

where £x(X7) is the error of prediction using only the features in

7T, F iIs a function class from X+ to ), and L is a loss.

Feature selection criterion:

pmin Q(T) = Tr(Xyyix);

Property 1. If (Hx, ky) is characteristic, then
Tr(Xyyx) < Te(Xyy|x,) for any T. Moreover, the equality
TI‘(Z yy|X) = TI'(Z YY\XT) holds if and only If YLX‘XT

Property 2. The criterion characterizes prediction error:

Tr(Xyyx,) = Er(XT) = flenjf x v(Y — f(X7))°.

where Fp, is a function space fromR™ to Y defined from H .

Empirical estimate (with a linear kernel on Y):
min Q)T := Tr(YT(Gx, + nenly)~'Y),

T|=m
where
1 1
Gx, = (I — 77117)KX,,(/,, _ 511T),
KXT — (kX(XiTa XjT))nxna
Y E Rnxk’

and x” € R%is a vector with x/ = x; if i € T or 0 otherwise.

Theorem 1. [Feature Selection Consistency] Define the set of

all optimal feature subsets to be A = argmin .y ,Q(T), and let

AN

T € argmin 1,.,Q"(T) be a global optimum of the empirical
estimate. If e, — 0 and s,n — oo as n — oo, we have

AN

P(T™ € A) — 1.

Synthetic Experiments

Synthetic data sets: binary classification, 4-way classification,
additive nonlinear regression.

Other algorithms: Recursive feature elimination (RFE),
Minimum Redundancy Maximum Relevance (mMRMR), BAHSIC,
mutual information (MI) and Pearson’s correlation (PC).
Evaluation: Median rank assigned to true features.

7 Binary Classification

4-Way Classification

Additive Nonlinear Regression

||||||||||||||||

]10 20 30 40 50 60 70 80 90 100 :!I.O 20 30 40 50 60 70 80 90 100 ]].0 20 30 40 50 60 70 80 90 100

Number of Samples Number of Samples

— Our Method — RFE — mRMR BAHSIC — M| PC|

Number of Samples

Plots of median rank vs. number of samples

Real-world Experiments

Summary of data sets:

ALLAML CLL-SUB-111 glass ORL orlrawsl1l0P pixrawlOP

Samples /2 111 214 400 100 100
Features 7,129 11,340 10 1,024 10,304 10,000
Classes 2 3 6 40 10 10
TOX-171 vowel warpAR10P warpPIE10P wine Yale
Samples 171 990 130 210 178 165
Features 0,784 10 2,400 2,420 13 1,024
Classes 4 11 10 10 3 15

Other nonlinear algorithms: mRMR, BAHSIC, and MI.
Evaluation: Accuracy of a kernel SVM on selected features.

Conditional Covariance Operator

(7‘[)(, k/‘v) and (7‘[3}, ky): 2
(X, Y): a random vector

KHSSs of functions on X’ and ).
on X x Y with joint distribution Py y.

Cross-covariance operator. an operator yx : Hy — Hy with

(9: Zyxf)ay, = Ex v[(F(X) — Ex[f(X)])(9(Y) — Ev[g(Y)])].
Conditional covariance operator:

2 yy|x
2 yy|x captures conditio

1
= Lyy — Lyx2 yxlXY-
nhal variance: for g € Hy,

(9, Lyy|x9)n, = Ex[Varyx[g(Y)|X]].

Y yy|x captures residual

error: for g € Hy,

(9, Lyyix)n, = inf Exy(g(Y)— f(X))?.

fEHX

Optimization

We relax the initial NP-hard formulation to obtain:

min  y'(Gwex + Nenh) 'y
subjectto 0<w; <1, /1=1,....d,

1"w<m

where @ Is the Hadamard product.

We may further use a kernel approximation G, ~ V,, V.

1
" —(I = Vi (V) Vi + cpnlp) TV,

(GW@X —|_ ngnln)_ Enn

Both objectives are optimized using projected gradient descent.
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