# Language-Based Image Editing with Recurrent Attentive Models

### Abstract

We investigate the problem of Language-Based Image Editing (LBIE). Given a source image and a language description, we want to generate a target image by editing the source image based on the description. We propose a generic modeling framework for two sub-tasks of LBIE: language-based image segmentation and image colorization. The framework uses recurrent attentive models to fuse image and language features. Instead of using a fixed step size, we introduce for each region of the image a termination gate to dynamically determine after each inference step whether to continue extrapolating additional information from the textual description. The effectiveness of the framework is validated on three datasets.

### Problem

### Language-based image editing:

Given a source image (a sketch, a grayscale image or a natural image), generate a target image based on natural language instructions.

### **Potential applications:**

Computer-Aided Design (CAD)

Virtual Reality (VR)



### Framework (Overview)



Jianbo Chen\*, Yelong Shen<sup>†</sup>, Jianfeng Gao<sup>†</sup>, Jingjing Liu<sup>†</sup>, Xiaodong Liu<sup>†</sup> University of California, Berkeley\*, Microsoft Research<sup>†</sup>

## Framework (Details)

Image encoder: Convolutional neural networks. Language encoder: Bidirectional long short-term memory. **Recurrent attentive fusion module**: Attention; termination. Use spatial attention mechanism to extract language features. Use termination gates to dynamically control whether to stop.



**Image decoder**: Deconvolutional neural networks. **Loss**: Cross-entropy for segmentation; GAN + L1 for colorization. **Training**: The Gumbel trick.

## CoSaL

**Data:** 50k images, each equipped with direct and relational descriptions.

| The inverse-triangle is blue.                       |
|-----------------------------------------------------|
| The color of the shape above the ellipse is blue.   |
| The rectangle is yellow.                            |
| The triangle is gray.                               |
| The ellipse is blue.                                |
| The fat ellipse is light-green.                     |
| The circle is gray.                                 |
| The color of the shape left to the diamond is gray. |
| The fat half-ellipse is black.                      |

**Task:** Given a black-white image and its textual description, colorize the nine shapes correspondingly. **Results**:

|         |           | # dired | ct |
|---------|-----------|---------|----|
| # Steps | Attention | 4       |    |
| 1       | No        | 0.2107  | 0  |
| 1       | Yes       | 0.4030  | 0  |
| 4       | Yes       | 0.5033  | 0  |
|         |           |         |    |

Average IoU over nine shapes and the background.



descriptions .2499 0.3186 .5220 0.7097 **.5313** 0.7017

## ReferIt

Data: 20k photos; 130k textual descriptions; 100k objects. **Task:** Image segmentation of the referred object based on texts.

### Metrics:

**IoU**: IoU computed over the entire dataset. **Results**:

| Model         | Precision@0.5  | Precision@0.6 | Precision@0.7  | Precision@0.8 | Precision@0.9 | IoU    |
|---------------|----------------|---------------|----------------|---------------|---------------|--------|
| SCRC bbox     | 9.73%          | 4.43%         | 1.51%          | 0.27%         | 0.03%         | 21.72% |
| GroundeR bbox | 11.08%         | 6.20%         | 2.74%          | 0.78%         | 0.20%         | 20.50% |
| Hu, etc.      | <b>34.02</b> % | 26.71%        | <b>19.32</b> % | 11.63%        | 3.92%         | 48.03% |
| Our model     | 32.53%         | <b>27.9</b> % | 18.76%         | 12.37%        | <b>4.37</b> % | 50.09% |

## **Oxford-102 Flower**

**Data**: 8k images, each equipped with five textual descriptions. **Task:** Colorize a grayscale flower image based on one of its textual descriptions.

### Metrics:

**Consistency**: Humans rate consistency of images and captions. **Quality:** Humans rate the quality of images. **Results**:





First row: Original images. Second row: Baseline. Third row: Our model.



First row: Original. Remaining rows: Results generated with arbitrary textual descriptions: "The flower is white/red/orange/yellow/blue/purple in color".



## **Precision@threshold**: % data such that IoU > threshold.

| ur Model | BaseLine | Truth |
|----------|----------|-------|
| 0.849    | 0.27     | N/A   |
| 0.598    | 0.404    | 0.856 |